Local computation

Seminar: Algorithms for Wireless Networks

Hendrik Thiis"
hendrik.thues@rwth-aachen.de

ABSTRACT

The main aspect of this paper is about computations that
can be made locally. This means that a given problem can
be solved, independent of the size of the network. In a given
network, an algorithm decides the later defined output for a
vertex by taking a look at the direct neighborhood.

There are some problems that can be solved locally. For
example, the coloring of a graph or a variation of the dining
philosophers problem.

But there are also some problems which might be hard to be
computed locally. This is for example the minimum vertec
cover (MVC). For this problem, some lower bounds are pre-
sented. That means that there has to be a certain number of
rounds and a certain amount of time to solve the MVC. Also,
there are some other problems, like the maximal matching
(MM), the maximal independent set (MIS) or the minimum
dominating set (MDS). Those problems will be reduced to
the MVC, so the lower bounds will nearly be the same.

1. INTRODUCTION

Since distributed systems grow larger, there is a need of
algorithms that compute their output independent of the
size of the system. Mostly, it is impossible that every vertex
in these networks knows the whole system. There is only a
small neighborhood that a vertex gets to know. How can a
global problem now be solved if there is no global authority
which tells each vertex what to do?

So, there is a need of methods to structure a system, where
some algorithms can compute an output for a single vertex.
The output of all the vertices will be a solution of a global
problem. Thus, there is no need of a global authority, if
some special problems are concerned.

In this paper, a network is seen as an undirected graph of
vertices and edges G(V, E). A vertex represents a processor.
An edge is a direct connection of two processors. These two
can then communicate by using this edge. One vertex can

*Matrikel-Nr.: 234858

have several edges, so it can communicate directly to more
than one other processor. The number of edges is called
the degree of a vertex. These degrees are mostly bounded.
The vertices are only allowed to communicate with their
direct neighbors. After a certain number of rounds, a given
algorithm has to decide which output a certain vertex, it
operates on, has to receive.

The chapter 2 is about some special problems that can
be solved locally. These are the coloring of a graph and the
so called formal dining philosophers problem. The coloring
problem of a given graph is modified a bit. Vertices with a
given color are allowed to have neighbors with the same color
as long as they have at least one neighbor which is colored
differently. This problem is called the weak coloring problem.
The formal dining philosopher problem is also a modifica-
tion of the well known dining philisophers problem [1]. A
philosopher does not only have two possibilities to gain the
two needed ressources, but he has at least three possibilities
to gain two ressources. The content of this chapter is from
the paper "'What Can Be Computed Locally‘ by Naor and
Stockmeyer [5].

In chapter 3, some lower bounds for some special problems
are presented. These problems are the computation of a
minimum vertex cover and, as reduction to this problem,
the minimum dominating set, the maximal matching and
the maximal independent set. These lower bounds show
that there are some restrictions if these local algorithms are
concerned. An algorithm needs a certain amount of time
and a certain number of communication rounds to compute
the output of a given vertex. The results presented in this
chapter are from the paper 'What Cannot Be Computed
Locally‘ by Kuhn, Moscibroda and Wattenhofer [3].

2. POSSIBLE LOCAL COMPUTATION

A possible local computation can be made if an algorithm
produces an output for a single vertex independent of the
size of the system. That means that this algorithm can only
run for a constant time. The output that is produced has to
solve a problem concerning the whole system. Thus, there
is no need of a global authority that solves a given problem
by knowing the whole system. The vertices create a globally
valid solution in constant time on their own without knowing
everything about the system, they are part of.

2.1 Definitions

The distance between two vertices u and v of a graph
G(V,E) is defined as distg(u,v). For an edge e = (v, w)
with the vertices v € G and w € G, distg(u,e) equals to



min(dist(u,v),dist(u,w)) + 1 for any v € V(G). Bg(u,r)
for a vertex u and a positive integer r is a subgraph of G
such that diste(u,v) < r and distg(u,e) < r Yv,e € G.
A pair (H,s) is called a centered graph if H is a graph and
s is a vertex of H. The maximum distance from s to any
other vertex or edge of H is called the radius of this centered
graph.

For locally checkable labeling (LCL), the graph is initially
labeled with input labels which are elements of the finite set
Y. The output labels are elements of the set I'. The input
labels, also called IDs, are unique positive integer values, so
every vertex can be identified uniquely. The IDs are used
to show the relative order of the vertices. An algorithm A
which runs ¢ steps at a vertex u is supposed to collect all
information about the subgraph B¢ (u,t). Based on this, A
chooses an output label for w.

Note, that the IDs of the vertices do not have to be strictly
incremented by one. That is that not all IDs from {1,...,n}
have to be assigned to the vertices of an n-vertex graph. Two
id numberings n and 1’ are order-equivalent if n’ respects the
relative order of the IDs of 7. A local algorithm A is order-
invariant if it produces the same output with the order-
equivalent id numberings 1 and 7’.

THEOREM 2.1. Fiz an LCL L, a class G of graphs and
a time bound t. Let d be the maximum degree of a graph
in G. There is a number R, depending only on d, t and L,
such that the following holds. For every local Algorithm A
with time bound t and every set S of IDs with |S| > R, there
is an order-invariant local algorithm A’ with time bound t
such that, for every G € G and every input labeling of G,
if A labels G correctly for every id numbering drawn from S
then A’ labels G correctly for every id numbering.

The graphs in this chapter are d-regular or they are restricted
to the maximum degree of d for any constant d.

2.2 Weak Coloring

A graph is weak c-colored with colors from {1,...,c} if
these colors are assigned to the vertices in a way that every
non-isolated v € G has at least one neighbor w € G which
received a different color. A graph G can be weak-colored
locally if all the vertices of G have odd degree. First, d(d +
1)%+2 colors will be assigned to the vertices of a d-regular
graph, d > 3. If there are less vertices than possible colors,
then the IDs can be used as colors. In the second step,
the colors will be reduces to two. If there are more vertices
than colors, the following algorithm has to be used. The
colors are defined as vectors in the following way: C, =
(Cu[0], Cu1],...,Culd+1]), Culi] € {1,...,d+ 1}. id(v) is
defined as the id of a vertex v. The coloring of a vertex v
happens in two steps:

1. Get the IDs of all neighbors w of v including id(v),
sort them and store as array IDS,. r,(w) is now the
position of id(w) in IDS,. Cy[—1] is set to the the
degree of v. C,[0] is set to 7, (v).

2. Set Cy[ry(w)] = ry(v) for neighbors w of v.

CLAIM 2.2. The coloring archived by this algorithm is a
legal weak coloring if d is odd.

ProOOF. If all the r,(v) are different, then we are done
because C,[0] = 7y (v) for all v € G. Otherwise, we assume

that v has more neighbors with an ID, higher than id(v),
than with a lower ID. 7 (w) = 74 (v) = 14 (v) < 74(v) fol-
lows. So, we can assume that there are at least two vertices
a and b where id(v) is at the same position j. So, the jth
position of the color of a and b should be the same. But
rv(a) # 1v(b) and so, a and b could not have the same color.
Thus, v has at least one neighbor with a different color. The
second case (more lower than higher IDs) is similar. [J

If the vertices have different odd degrees, add C,[—1] with
the degree of v to the colors.

To reduce the colors, there are two methods presented
here. The Cole-Vishkin [2] method allows a logarithmical
color-reduction to the limit of four. The other method only
reduces the color by one in every round.

In the first method, choose the smallest ¢’ with (LC,C;2 J) >c
with ¢ as the number of colors. Now, associate a different
subset S; C {1,...,c'} of size |¢'/2] to every i € {1,...,c}.
v has at least one neighbor colored differently, it now re-
colors itself to a color which is element of Scolor() but not
of Scolor(w)- A weak 4-coloring can be found in O(log™d)
rounds.

The second method is used to reduce the ¢ colors to 2. In
the 7th round, the vertex with the color i will recolor itself
according to the following rules:

1. v recolors itself 0, if all neighbors of v still have their
original color.

2. If all recolored neighbors of v have the color 1, then v
recolors itself 0. If at least one neighbor of v recolored
itself to 0, then v recolors itself 1.

It is easy to see that this algorithm works fine. But there
can be some graphs which colors cannot be reduced this
way. When a vertex v is not weak-colored properly, then
(1) its degree d is even, (2) its rank in its neighborhood is
d/2+1 and (3) every neighbor w of v has degree d and rank
ro(w) =d/2+ 1 as well.

THEOREM 2.3. Let Oq4 be the class of graphs of mazimum
degree d where the degree of every vertex is odd. For every
fized d there is a local algorithm with time bound O(log*d)
which solves the weak 2-coloring problem for Oy.

2.3 Formal-Dining Philosophers Problem

This problem is a variation of the dining philosophers
problem. There are more than only two ressources availlable
to a philosopher.A philosopher can only eat if he has ob-
tained any two ressources. For the solution of this problem
(no philosopher should die by starvation), the weak-coloring
will be used. The vertices of a graph are colored with the
colors {0,1,x}. If the weak-2-coloring fails at a vertex v,
then this vertex will be colored *. v and all its neighbors
have an even degree. For this problem, the minimum degree
of the vertices is assumed as three. Every vertex colored *
picks two edges to neighbors and never will release them.
Since these vertices can eat when they want to, they will be
ignored in the further description. Let’s assume that every
vertex colored ¢ € {0, 1} has at least one neighbor colored 1
and one colored 0. This assumption will later be corrected,
because this is not always the case. Each vertex colored
¢ € {0,1} chooses a neighbor colored c as its first neighbor
and an other neighbor colored 1 — ¢ as its second neighbor.
The vertices now act upon a dynamic algorithm to tell them,



which edge to request and so on. Requesting means that a
vertex tries to allocate this edge.

1. Request edge from the first neighbor

2. Request edge from the second neighbor
3. Eat

4. Release edges

CrLAaM 2.4. The mazimum length, a vertex has to wait to
get the two edges is two.

ProOOF. The worst case is that a vertex is waiting at step
1. Then the other vertex, which is sharing this edge, has
already allocated this edge. And since this vertex has the
same color, it is at least at step two, which means that it
has to wait one single step. []

We cannot assume that each vertex has two neighbors with
different colors. Every vertex colored 1 chooses a neighbor
colored 0 as the second neighbor. This decision is distributed
to this neighbor. A vertex w colored 0 now takes on of the
vertices that have chosen w as second neighbor. If there
is none, then it just take an arbitrary 1l-colored neighbor.
Each vertex chooses an arbitrary adjacent vertex as the first
neighbor, but not the second neighbor and not a neighbor
colored with a * if this vertex permanently blocks this shared
edge.

CLAIM 2.5. The mazimum length, a vertex has to wait to
get the two edges is four if the description above is used.

ProoF. Consider a setting, where three vertices w1, wa
and ws are colored 1, 0 and 1, respectively. Let w2 be the
first neighbor of ws, w2 the second neighbor of w; and ws
the second neighbor of ws. This can not happen, because w1
has chosen w2 as a second neighbor, ws has not chosen ws
as a second neighbor. The vertex w2 has to take a vertex as
second neighbor that has chose wz. So, this vertex cannot
take ws. Consider now a chain of vertices ug to us where
uo is colored c, u; is colored 1 — ¢ and so on. Let’s assume
that w; is waiting for u;+1, 0 < 1 < 4. This is a waiting-
chain with a length of 5. For 1 < i < 3, u; has to be the
first neighbor of u;41 and for 1 < ¢ < 4, u;4+1 has to be the
second neighbor of u;. Now, no matter,ifc=0o0r c =1, we
get a forbidden configuration as mentioned above. So, there
cannot be a waiting-chain with the length of 5. [

THEOREM 2.6. The protocol presented here solves the for-
mal dining philosophers problem locally.

3. IMPOSSIBLE LOCAL COMPUTATION

In this chapter, some lower bounds for the minimum ver-
tex cover are presented. A vertex v collects all the informa-
tion it can get in k communication rounds. It is shown that
the runtime of any algorithm does not only depend on the
number of the communication rounds k but also on the num-
ber of vertices or on the highest degree in the system. For
this, a cluster-tree with some special properties is created.
In subchapter 3.3, the lower bounds are derived.

3.1 Definitions

Ty, is the environment, a vertex v gets to know in k
rounds. A given algorithm now decides with the labeling of
7.,k and 7, which output is calculated for v. Gy = (V, E)
for each positive integer k, is a graph that can be grouped
into disjoint sets of vertices. These sets are linked to each
other as bipartite graphs, they are called clusters. CTy =
(C,A) is called cluster tree. It is a directed tree with doubly
labeled arcs [ : A — N x N. An arc is defined as follows:
a = (C,D) € A with l(a) = (d¢,d6p). This means that
the clusters C' and D are linked as a bipartite graphs and
each vertex v € C has d¢ neighbors in D and the other way
around. The clusters that do not have any child-clusters are
called leaf-clusters. The others are called inner-clusters.

DEFINITION 3.1. CT} is recursively defined as follows:

CTi = (C1,A)
C1 = {Co,C1,Cs,Cs}
A = {(Co,C1),(Co,C2), (C1,C3)}
l(Co,Cl) = ((50,(51)
[(Co,C2) = (61,02)
l(01,03) = (50761)

Given CTy_1, we obtain CTy in two steps:

e For each inner-cluster C;, add a new leaf-cluster C,
with 1(C;, C}) := (8k, Ok+1-

e For each leaf-cluster C; of CTy—1 with (C},C;) € A
and 1(C},Cs) = (6p,0p+1, add k new leaf-clusters C;
with 1(Ci, C}) = (85,0541 for j =0,--- ,k,j #p+1.

The level of a cluster of a cluster tree is the distance between
this cluster and Cy. The depth of a cluster C is its distance
to the furthest leaf-cluster in the subtree rooted at C. g(G),
the girth of GG, is the length of the shortest cycle in G. Gy,
has to have a girth of at least 2k+1. So it is guaranteed that
all the vertices in G, see a tree in k communication rounds.

3.2 Construction

For appropriate r, i.e. » =2k —4, r > 3, r is odd and
a prime-power ¢, let D(r,q) be a graph with 2¢" vertices
and a girth of at least 2k + 1. The construction of such a
graph D(r,q) can be found in [4]. Let G;C be an arbitrary
cluster tree. With this G, as basis, a graph Gy is built
with a girth that is large enough. Both graphs are bipartit.
The two sets V1(G},) and V2(GY,) represent the odd and the
even levels of the tree, respectively. Let m be the number
of vertices of the larger set. And let ¢ be the smallest prime
power, which is greater or equal to m. The vertices v of
G, are labeled with elements c(v) € F,. Gy is a subgraph
of D(r,q). Two vertices (p) and (1) of D(r,q) (which are
arrays) are now connected in Gy, if they are connected in
D(r,q) and if there is an edge between u € V;(G},) and
v € Va(Gy) so that c(u) = p1 and c¢(v) = l;. At the end,
all the edges of G, are deleted that have not been relevant.
Then, G has at most 2mg?*~° vertices.

Now, it will be proven that two adjacent vertices in the
clusters Cy and C see the same topology 7, . Each vertex
only sees a tree in k communication rounds, these trees are
called view trees, which can be derived by recursivly follow-
ing all the neighbors of a vertex v.

DEFINITION 3.2. Let Vi = J,_o..., bi and Va = ..., b
be view-trees; b; and bj; are subtrees entered on &;. Then, V1



and Vo are r-equal if all corresponding subtrees are (r-1)-
equal,

ViZVa <= b'='b;, Vi € {0, -+ , k}.

Further, all subtrees are 0-equal. It does not matter on which
level two cluster are, which depth they have or on which
0-link they can be reached. If the algorithm is in the last
communication round, these are the last clusters. And so,
they can be seen as equal.

To show that a given vertex in C sees exactly the same
topology as a given vertex in C}, it has to be proven that

Ve, 2V, holds in Gy.

LEMMA 3.3. Two view-trees V,,, and V,, which can be en-
tered via an equal §; and which have the same depth are
r-equal if both of them have a subtree 3 and 3 which are
(r—1)-equal. This also holds if Vy,, and Vi, are in different
levels.

Vs ZVy <= 8'='5

PRrROOF. Due to the construction of the cluster tree, sub-
trees with equal depth and entry-link grow identically. So,
all paths, that do not return to the startingclusters, are iden-
tical. The only difference is that other paths which may
return to the startingclusters could not use the link &;41.
They have to use d;+1 — 1. But this does not affect 5 and
3’ and therefore,

Vo2V < Vo "=V ABE18 s> 1
This can be repeated until » = s and due to VvllgVU/z, the
lemma follows. [

LEMMA 3.4. Let B and 3’ be sets of subtrees of the view-
trees Vi, and V,,, respectively. V,, and V,, are entered via
an equal §;. Vi, has depth d and is on level x and V,, has
depth d’' and is on level y. Then, for all x and y and for all
r < min(d,d’),

Vi =V = =5

PRrROOF. It is easy to see that the depth of the subtrees is
not important anymore. Since the entrylinks are the same,
the subtrees have grown identically (eccept from the depth).
For r < min(d,d’), the given subtrees are the same. And
so, this is proven by using lemma 3.3. [J

THEOREM 3.5. Conider a graph Gi. Let Vo, and Ve, be
view-trees of two adjacent vertices in the clusters Co and C1,

respectively. Then, VCOQVCI.

It is easy to see that this can be proven via induction. In-
terested readers are refered to [3].

3.3 Lower Bounds and Reductions

In this subsection, the lower bounds of a k-local MVC are
derived. Let OPT be the optimal and ALG an arbitrary
solution to this problem. OPT will try to cover the vertices
of Cy by putting all the vertices of C in the vertex cover.
ALG might try to put quite many vertices of Cy to the vertex
cover.

LEMMA 3.6. Let ALG run for at most k rounds. When
applied to Gy, ALG contains in the worst case at least half
of the vertices of Cop.

PROOF. Since the view trees of arbitrary adjacent ver-
tices v of Cp and w of C; are the same, the cannot be dis-
tinguished by an algorithm. So, they have the same prob-
ability P to end in the vertex cover. But one of them has
to, due to the definition of MCV. So, P(v) + P(w) > 1 <
P(v) = P(w) > 1/2. It follows that each vertex of Cop has
the probability of 1/2 to end in the vertex cover. The lemma
follows. [

We know that the vertices of Cy are not compulsory in the
vertex cover. Thus, there is an upper bound: |OPT| <
n — ng. Now, d; is definded as follows for some value 0:

6 =06 Vie{0,---  k+1} (1)

LEMMA 3.7. If k+1 < 0, the number of vertices n of Gy
18

k+1
< + —
nino<1 57(19 1))

PROOF. Due to (1), we can assume that a cluster on level
[ contains ng /6l vertices. Each cluster has at most &£ + 1
upper neighbor-clusters. Thus, the number of vertices n; on
level 1 is upper bounded by
v, 1o

ot

Summing up the vertices over all the level 1:

k+1 1 oo 1

k+1 k+1

nogno-Z(%> Sno-Z(%)
=0

1=0
k+1
=ng <1+75—(k+1)>

The number of vertices per cluster decrease by a factor § on
each level of CTy. Due to (1), it is now possible to obtain
G,. CTy has k + 2 levels, and at most 6% vertices are in
each cluster. If we assume that the clusters on level k + 1
have 6" vertices, then there are §2*+1~! vertices in a given
cluster on level [. By lemma 3.7, it follows that n < 2ng for

k+1 < /2. By using the construction of subsection 3.2, we
2k—5

mg(k—i—l)

O

get ng < ng - (n') with (n') as the smallest primepower
equal to n’, that is (n') < 4nyg. It follows:

no < (4n6)2k74 < 421674641@2 (2)

THEOREM 3.8. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the mini-
mum vertex cover problem on G has an approximation ratio

of at least
c/k? Al/k
n
Q( 3 )andQ( 3 )

for some sonstant ¢ > 1/4, where n and A denote the num-
ber of vertices and the highest degree in G, respectively.

2
Proor. We can choose 6 > 471/(2’“)71(1)/(4’C ) due to in-
equality (2). Finally, using lemmas 3.6 and 3.7, the approx-
imation ratio « is at least

no/2 _ mof2-6/2 _  (n/2)Y @) (n“

no- (k+1) = 44Y/C(k+1) k

= n—no —

The second lower bound follows from A = §**1. O



THEOREM 3.9. In order to obtain a polylogarithmic or
even constant approximation ratio, every distributed algo-

rithm for the MVC problem requires at least 2 ( 1o§ign>

log A I
and € 08 commaumnication rounds.
loglog A

PROOF. For k = 8/logn/loglogn with 8 > 0, we get

cloglogn
a > n Fhesn . L, [loglogn
- I6] logn

as the first lower bound of theorem 3.8 with v as the hidden
constant of the 2-notation. After a few calculation steps, we

c _ 1
BZ 2

get that « is element of 2 (log(n)( ) There is always

a (8 such that the obove expression is a polylogarithmic term
a(n). The first lower bound of the theorem 3.8 follows. The
second lower bound of this theorem follows analogous with
k= plogA/loglog A. [

Now, other problems are reduces to the MVC problem.
For the maximal matching (MM) and the maximal indepen-
dent set (MIS), the best known lower bound for distributed
computation is Q(log* n).

THEOREM 3.10. There are graphs G on which every dis-
tributed algorithm requires time
log A
loglog A

Q _logn and
loglogn
PROOF. Since the set of all end-vertices of the edges of

to compute a MM or a MIS.

a MM form a 2-approximation for MVC, the lower bound
follows directly from theorem 3.9. To see that these lower
bounds hold for MIS, consider a line graph L(Gy) of Gi. The
MM problem on G is the same as the MIS problem on L(G).
And even though there is a different amount of vertices (n in
G, and less than n?/2 in L(Gy)) and a different maximum
degree (A in G and 2A in L(G}y), the theorem holds. [

THEOREM 3.11. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the min-
imum dominating set (MDS) problem on G has approzima-
tion ratios at least

c/k? AL/E
Q(nk )andQ( 3 )
for some constant c, where n denotes the number of vertices
and A the highest degree in G.

PrOOF. Let G' = (V', E’) be a graph in which the MVC
problem is solved. The graph G = (V, E) for the MDS is
now constructed as follows: Every v' € V/(G’) corresponds
to a v, € V(G), every € € E'(G’) corresponds to a ve €
V(G). Two vertices v}, u,, € G are adjacent, if v',u’ € G’
are adjacent. Two vertices v,, w. € G’ are adjacent, if the
vertex v’ € V'(G’) is adjacent to the edge w' € E'(G").
There are no other edges in G. If C is a vertex cover for
G’, the vertices v, € G, which correspond to vertices in C'
form a valid dominating set on G. All e-vertices are covered.
The n-vertices are covered due to the fact that a valid vertex
cover is a valid dominating set as well. The other direction:
If D is a valid dominating set on G, every e-vertex in D

can be replaced by one of its two neighbors. And thus, we
get a different dominating set D’ which also has the needed
properties. But D’ only consists of n-vertices. D’ dominates
all e-vertices and it also forms a valid vertex cover for G’. It
follows that MVS on G’ is as hard as MDS on G. [J

4. OPEN QUESTIONS

If the weak-2-coloring is applicable, it can be made very
efficient and with a low failure rate. Based on the weak-2-
coloring, the formal dining philosophers problem can also be
solved efficiently. But it is very unusual that an algorithm
can be ashured that the degrees of the vertices of a graph
are bounded.

For some other problems, e.g. the MVC, there are lower
bounds for the runtime depending on the highest degree of
a graph and on the number of vertices. They cannot be
solved locally, because the vertices do not know the whole
system. Due to fast growing networks, it would be good, if
some problems could be solved locally. But there are only a
few special locally solvable problems.

S. REFERENCES

[1] Dining philosophers problem. http://en.wikipedia.
org/wiki/Dining_philosophers_problem.

[2] R. Cole and U. Vishkin. Deterministic coin tossing with
applications to optimal parallel list ranking. Inf.
Control, 70(1):32-53, 1986.

[3] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In PODC ’04: Proceedings
of the twenty-third annual ACM symposium on
Principles of distributed computing, pages 300-309,
New York, NY, USA, 2004. ACM.

[4] F. Lazebnik and V. A. Ustimenko. Explicit construction
of graphs with an arbitrary large girth and of large size.
Discrete Appl. Math., 60(1-3):275-284, 1995.

[5] M. Naor and L. Stockmeyer. What can be computed
locally? pages 184-193, 1993.



