
Local computation

Seminar: Algorithms for Wireless Networks

Hendrik Thüs
∗

hendrik.thues@rwth-aachen.de

ABSTRACT
The main aspect of this paper is about computations that
can be made locally. This means that a given problem can
be solved, independent of the size of the network. In a given
network, an algorithm decides the later defined output for a
vertex by taking a look at the direct neighborhood.
There are some problems that can be solved locally. For
example, the coloring of a graph or a variation of the dining
philosophers problem.
But there are also some problems which might be hard to be
computed locally. This is for example the minimum vertec
cover (MVC). For this problem, some lower bounds are pre-
sented. That means that there has to be a certain number of
rounds and a certain amount of time to solve the MVC. Also,
there are some other problems, like the maximal matching
(MM), the maximal independent set (MIS) or the minimum
dominating set (MDS). Those problems will be reduced to
the MVC, so the lower bounds will nearly be the same.

1. INTRODUCTION
Since distributed systems grow larger, there is a need of

algorithms that compute their output independent of the
size of the system. Mostly, it is impossible that every vertex
in these networks knows the whole system. There is only a
small neighborhood that a vertex gets to know. How can a
global problem now be solved if there is no global authority
which tells each vertex what to do?

So, there is a need of methods to structure a system, where
some algorithms can compute an output for a single vertex.
The output of all the vertices will be a solution of a global
problem. Thus, there is no need of a global authority, if
some special problems are concerned.

In this paper, a network is seen as an undirected graph of
vertices and edges G(V,E). A vertex represents a processor.
An edge is a direct connection of two processors. These two
can then communicate by using this edge. One vertex can

∗Matrikel-Nr.: 234858

.

have several edges, so it can communicate directly to more
than one other processor. The number of edges is called
the degree of a vertex. These degrees are mostly bounded.
The vertices are only allowed to communicate with their
direct neighbors. After a certain number of rounds, a given
algorithm has to decide which output a certain vertex, it
operates on, has to receive.

The chapter 2 is about some special problems that can
be solved locally. These are the coloring of a graph and the
so called formal dining philosophers problem. The coloring
problem of a given graph is modified a bit. Vertices with a
given color are allowed to have neighbors with the same color
as long as they have at least one neighbor which is colored
differently. This problem is called the weak coloring problem.
The formal dining philosopher problem is also a modifica-
tion of the well known dining philisophers problem [1]. A
philosopher does not only have two possibilities to gain the
two needed ressources, but he has at least three possibilities
to gain two ressources. The content of this chapter is from
the paper ’What Can Be Computed Locally‘ by Naor and
Stockmeyer [5].

In chapter 3, some lower bounds for some special problems
are presented. These problems are the computation of a
minimum vertex cover and, as reduction to this problem,
the minimum dominating set, the maximal matching and
the maximal independent set. These lower bounds show
that there are some restrictions if these local algorithms are
concerned. An algorithm needs a certain amount of time
and a certain number of communication rounds to compute
the output of a given vertex. The results presented in this
chapter are from the paper ’What Cannot Be Computed
Locally‘ by Kuhn, Moscibroda and Wattenhofer [3].

2. POSSIBLE LOCAL COMPUTATION
A possible local computation can be made if an algorithm

produces an output for a single vertex independent of the
size of the system. That means that this algorithm can only
run for a constant time. The output that is produced has to
solve a problem concerning the whole system. Thus, there
is no need of a global authority that solves a given problem
by knowing the whole system. The vertices create a globally
valid solution in constant time on their own without knowing
everything about the system, they are part of.

2.1 Definitions
The distance between two vertices u and v of a graph

G(V,E) is defined as distG(u, v). For an edge e = (v, w)
with the vertices v ∈ G and w ∈ G, distG(u, e) equals to

min(dist(u, v), dist(u,w)) + 1 for any u ∈ V (G). BG(u, r)
for a vertex u and a positive integer r is a subgraph of G
such that distG(u, v) ≤ r and distG(u, e) ≤ r ∀v, e ∈ G.
A pair (H, s) is called a centered graph if H is a graph and
s is a vertex of H. The maximum distance from s to any
other vertex or edge of H is called the radius of this centered
graph.

For locally checkable labeling (LCL), the graph is initially
labeled with input labels which are elements of the finite set
Σ. The output labels are elements of the set Γ. The input
labels, also called IDs, are unique positive integer values, so
every vertex can be identified uniquely. The IDs are used
to show the relative order of the vertices. An algorithm A
which runs t steps at a vertex u is supposed to collect all
information about the subgraph BG(u, t). Based on this, A
chooses an output label for u.

Note, that the IDs of the vertices do not have to be strictly
incremented by one. That is that not all IDs from {1, . . . , n}
have to be assigned to the vertices of an n-vertex graph. Two
id numberings η and η′ are order-equivalent if η′ respects the
relative order of the IDs of η. A local algorithm A is order-
invariant if it produces the same output with the order-
equivalent id numberings η and η′.

Theorem 2.1. Fix an LCL L, a class G of graphs and
a time bound t. Let d be the maximum degree of a graph
in G. There is a number R, depending only on d, t and L,
such that the following holds. For every local Algorithm A
with time bound t and every set S of IDs with |S| ≥ R, there
is an order-invariant local algorithm A′ with time bound t
such that, for every G ∈ G and every input labeling of G,
if A labels G correctly for every id numbering drawn from S
then A′ labels G correctly for every id numbering.

The graphs in this chapter are d-regular or they are restricted
to the maximum degree of d for any constant d.

2.2 Weak Coloring
A graph is weak c-colored with colors from {1, . . . , c} if

these colors are assigned to the vertices in a way that every
non-isolated v ∈ G has at least one neighbor w ∈ G which
received a different color. A graph G can be weak-colored
locally if all the vertices of G have odd degree. First, d(d+
1)d+2 colors will be assigned to the vertices of a d-regular
graph, d ≥ 3. If there are less vertices than possible colors,
then the IDs can be used as colors. In the second step,
the colors will be reduces to two. If there are more vertices
than colors, the following algorithm has to be used. The
colors are defined as vectors in the following way: Cv =
(Cv[0], Cv[1], . . . , Cv[d + 1]), Cv[i] ∈ {1, . . . , d + 1}. id(v) is
defined as the id of a vertex v. The coloring of a vertex v
happens in two steps:

1. Get the IDs of all neighbors w of v including id(v),
sort them and store as array IDSv. rv(w) is now the
position of id(w) in IDSv. Cv[−1] is set to the the
degree of v. Cv[0] is set to rv(v).

2. Set Cv[rv(w)] = rw(v) for neighbors w of v.

Claim 2.2. The coloring archived by this algorithm is a
legal weak coloring if d is odd.

Proof. If all the rv(v) are different, then we are done
because Cv[0] = rv(v) for all v ∈ G. Otherwise, we assume

that v has more neighbors with an ID, higher than id(v),
than with a lower ID. rw(w) = rv(v) ⇒ rw(v) < rv(v) fol-
lows. So, we can assume that there are at least two vertices
a and b where id(v) is at the same position j. So, the jth
position of the color of a and b should be the same. But
rv(a) 6= rv(b) and so, a and b could not have the same color.
Thus, v has at least one neighbor with a different color. The
second case (more lower than higher IDs) is similar.

If the vertices have different odd degrees, add Cv[−1] with
the degree of v to the colors.

To reduce the colors, there are two methods presented
here. The Cole-Vishkin [2] method allows a logarithmical
color-reduction to the limit of four. The other method only
reduces the color by one in every round.

In the first method, choose the smallest c′ with
(

c′

bc′/2c

)
≥ c

with c as the number of colors. Now, associate a different
subset Si ⊂ {1, . . . , c′} of size bc′/2c to every i ∈ {1, . . . , c}.
v has at least one neighbor colored differently, it now re-
colors itself to a color which is element of Scolor(v) but not
of Scolor(w). A weak 4-coloring can be found in O(log∗d)
rounds.

The second method is used to reduce the c colors to 2. In
the ith round, the vertex with the color i will recolor itself
according to the following rules:

1. v recolors itself 0, if all neighbors of v still have their
original color.

2. If all recolored neighbors of v have the color 1, then v
recolors itself 0. If at least one neighbor of v recolored
itself to 0, then v recolors itself 1.

It is easy to see that this algorithm works fine. But there
can be some graphs which colors cannot be reduced this
way. When a vertex v is not weak-colored properly, then
(1) its degree d is even, (2) its rank in its neighborhood is
d/2 + 1 and (3) every neighbor w of v has degree d and rank
rw(w) = d/2 + 1 as well.

Theorem 2.3. Let Od be the class of graphs of maximum
degree d where the degree of every vertex is odd. For every
fixed d there is a local algorithm with time bound O(log∗d)
which solves the weak 2-coloring problem for Od.

2.3 Formal-Dining Philosophers Problem
This problem is a variation of the dining philosophers

problem. There are more than only two ressources availlable
to a philosopher.A philosopher can only eat if he has ob-
tained any two ressources. For the solution of this problem
(no philosopher should die by starvation), the weak-coloring
will be used. The vertices of a graph are colored with the
colors {0, 1, ∗}. If the weak-2-coloring fails at a vertex v,
then this vertex will be colored ∗. v and all its neighbors
have an even degree. For this problem, the minimum degree
of the vertices is assumed as three. Every vertex colored ∗
picks two edges to neighbors and never will release them.
Since these vertices can eat when they want to, they will be
ignored in the further description. Let’s assume that every
vertex colored c ∈ {0, 1} has at least one neighbor colored 1
and one colored 0. This assumption will later be corrected,
because this is not always the case. Each vertex colored
c ∈ {0, 1} chooses a neighbor colored c as its first neighbor
and an other neighbor colored 1 − c as its second neighbor.
The vertices now act upon a dynamic algorithm to tell them,

which edge to request and so on. Requesting means that a
vertex tries to allocate this edge.

1. Request edge from the first neighbor

2. Request edge from the second neighbor

3. Eat

4. Release edges

Claim 2.4. The maximum length, a vertex has to wait to
get the two edges is two.

Proof. The worst case is that a vertex is waiting at step
1. Then the other vertex, which is sharing this edge, has
already allocated this edge. And since this vertex has the
same color, it is at least at step two, which means that it
has to wait one single step.

We cannot assume that each vertex has two neighbors with
different colors. Every vertex colored 1 chooses a neighbor
colored 0 as the second neighbor. This decision is distributed
to this neighbor. A vertex w colored 0 now takes on of the
vertices that have chosen w as second neighbor. If there
is none, then it just take an arbitrary 1-colored neighbor.
Each vertex chooses an arbitrary adjacent vertex as the first
neighbor, but not the second neighbor and not a neighbor
colored with a ∗ if this vertex permanently blocks this shared
edge.

Claim 2.5. The maximum length, a vertex has to wait to
get the two edges is four if the description above is used.

Proof. Consider a setting, where three vertices w1, w2

and w3 are colored 1, 0 and 1, respectively. Let w2 be the
first neighbor of w3, w2 the second neighbor of w1 and w3

the second neighbor of w2. This can not happen, because w1

has chosen w2 as a second neighbor, w3 has not chosen w2

as a second neighbor. The vertex w2 has to take a vertex as
second neighbor that has chose w2. So, this vertex cannot
take w3. Consider now a chain of vertices u0 to u5 where
u0 is colored c, u1 is colored 1 − c and so on. Let’s assume
that ui is waiting for ui+1, 0 ≤ 1 ≤ 4. This is a waiting-
chain with a length of 5. For 1 ≤ i ≤ 3, ui has to be the
first neighbor of ui+1 and for 1 ≤ i ≤ 4, ui+1 has to be the
second neighbor of ui. Now, no matter, if c = 0 or c = 1, we
get a forbidden configuration as mentioned above. So, there
cannot be a waiting-chain with the length of 5.

Theorem 2.6. The protocol presented here solves the for-
mal dining philosophers problem locally.

3. IMPOSSIBLE LOCAL COMPUTATION
In this chapter, some lower bounds for the minimum ver-

tex cover are presented. A vertex v collects all the informa-
tion it can get in k communication rounds. It is shown that
the runtime of any algorithm does not only depend on the
number of the communication rounds k but also on the num-
ber of vertices or on the highest degree in the system. For
this, a cluster-tree with some special properties is created.
In subchapter 3.3, the lower bounds are derived.

3.1 Definitions
Tv,k is the environment, a vertex v gets to know in k

rounds. A given algorithm now decides with the labeling of
Tv,k and Tv,k which output is calculated for v. Gk = (V,E)
for each positive integer k, is a graph that can be grouped
into disjoint sets of vertices. These sets are linked to each
other as bipartite graphs, they are called clusters. CTk =
(C,A) is called cluster tree. It is a directed tree with doubly
labeled arcs l : A → N × N. An arc is defined as follows:
a = (C,D) ∈ A with l(a) = (δC , δD). This means that
the clusters C and D are linked as a bipartite graphs and
each vertex v ∈ C has δC neighbors in D and the other way
around. The clusters that do not have any child-clusters are
called leaf-clusters. The others are called inner-clusters.

Definition 3.1. CTk is recursively defined as follows:

CT1 := (C1,A1)
C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

l(C0, C1) := (δ0, δ1)
l(C0, C2) := (δ1, δ2)
l(C1, C3) := (δ0, δ1)

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-cluster C′i
with l(Ci, C

′
i) := (δk, δk+1.

• For each leaf-cluster Ci of CTk−1 with (C′i, Ci) ∈ A
and l(C′i, Ci) = (δp, δp+1, add k new leaf-clusters C′j
with l(Ci, C

′
j) = (δj , δj+1 for j = 0, · · · , k, j 6= p+ 1.

The level of a cluster of a cluster tree is the distance between
this cluster and C0. The depth of a cluster C is its distance
to the furthest leaf-cluster in the subtree rooted at C. g(G),
the girth of G, is the length of the shortest cycle in G. Gk

has to have a girth of at least 2k+1. So it is guaranteed that
all the vertices in Gk see a tree in k communication rounds.

3.2 Construction
For appropriate r, i.e. r = 2k − 4, r ≥ 3, r is odd and

a prime-power q, let D(r, q) be a graph with 2qr vertices
and a girth of at least 2k + 1. The construction of such a

graph D(r, q) can be found in [4]. Let G
′
k be an arbitrary

cluster tree. With this G′k as basis, a graph Gk is built
with a girth that is large enough. Both graphs are bipartit.
The two sets V1(G′k) and V2(G′k) represent the odd and the
even levels of the tree, respectively. Let m be the number
of vertices of the larger set. And let q be the smallest prime
power, which is greater or equal to m. The vertices v of
G′k are labeled with elements c(v) ∈ Fq. Gk is a subgraph
of D(r, q). Two vertices (p) and (l) of D(r, q) (which are
arrays) are now connected in Gk, if they are connected in
D(r, q) and if there is an edge between u ∈ V1(G′k) and
v ∈ V2(G′k) so that c(u) = p1 and c(v) = l1. At the end,
all the edges of Gk are deleted that have not been relevant.
Then, Gk has at most 2mq2k−5 vertices.

Now, it will be proven that two adjacent vertices in the
clusters C0 and C1 see the same topology Tv,k. Each vertex
only sees a tree in k communication rounds, these trees are
called view trees, which can be derived by recursivly follow-
ing all the neighbors of a vertex v.

Definition 3.2. Let V1 =
⋃

i=0···k bi and V2 =
⋃

i=0···k b
′
i

be view-trees; bi and b′i are subtrees entered on δi. Then, V1

and V2 are r-equal if all corresponding subtrees are (r-1)-
equal,

V1
r
=V2 ⇐ bi

r−1
= b′i,∀i ∈ {0, · · · , k}.

Further, all subtrees are 0-equal. It does not matter on which
level two cluster are, which depth they have or on which
δ-link they can be reached. If the algorithm is in the last
communication round, these are the last clusters. And so,
they can be seen as equal.

To show that a given vertex in C0 sees exactly the same
topology as a given vertex in C1, it has to be proven that

VC0
k
=VC1 holds in Gk.

Lemma 3.3. Two view-trees Vv1 and Vv2 which can be en-
tered via an equal δi and which have the same depth are
r-equal if both of them have a subtree β and β′ which are
(r− 1)-equal. This also holds if Vv1 and Vv2 are in different
levels.

Vv1
r
=Vv2 ⇐ β

r−1
= β′

Proof. Due to the construction of the cluster tree, sub-
trees with equal depth and entry-link grow identically. So,
all paths, that do not return to the startingclusters, are iden-
tical. The only difference is that other paths which may
return to the startingclusters could not use the link δi+1.
They have to use δi+1 − 1. But this does not affect β and
β′ and therefore,

Vv1
r
=Vv2 ⇐ V ′v1

r−s
= V ′v2 ∧ β

r−1
= β′, s > 1

This can be repeated until r = s and due to V ′v1

0
=V ′v2 , the

lemma follows.

Lemma 3.4. Let β and β′ be sets of subtrees of the view-
trees Vv1 and Vv2 , respectively. Vv1 and Vv2 are entered via
an equal δi. Vv1 has depth d and is on level x and Vv2 has
depth d′ and is on level y. Then, for all x and y and for all
r ≤ min(d, d′),

Vv1
r
=Vv2 ⇐ β

r−1
= β′

Proof. It is easy to see that the depth of the subtrees is
not important anymore. Since the entrylinks are the same,
the subtrees have grown identically (eccept from the depth).
For r ≤ min(d, d′), the given subtrees are the same. And
so, this is proven by using lemma 3.3.

Theorem 3.5. Conider a graph Gk. Let VC0 and VC1 be
view-trees of two adjacent vertices in the clusters C0 and C1,

respectively. Then, VC0
k
=VC1 .

It is easy to see that this can be proven via induction. In-
terested readers are refered to [3].

3.3 Lower Bounds and Reductions
In this subsection, the lower bounds of a k-local MVC are

derived. Let OPT be the optimal and ALG an arbitrary
solution to this problem. OPT will try to cover the vertices
of C0 by putting all the vertices of C1 in the vertex cover.
ALG might try to put quite many vertices of C0 to the vertex
cover.

Lemma 3.6. Let ALG run for at most k rounds. When
applied to Gk, ALG contains in the worst case at least half
of the vertices of C0.

Proof. Since the view trees of arbitrary adjacent ver-
tices v of C0 and w of C1 are the same, the cannot be dis-
tinguished by an algorithm. So, they have the same prob-
ability P to end in the vertex cover. But one of them has
to, due to the definition of MCV. So, P (v) + P (w) ≥ 1 ⇔
P (v) = P (w) ≥ 1/2. It follows that each vertex of C0 has
the probability of 1/2 to end in the vertex cover. The lemma
follows.

We know that the vertices of C0 are not compulsory in the
vertex cover. Thus, there is an upper bound: |OPT | ≤
n− n0. Now, δi is definded as follows for some value δ:

δi := δi,∀i ∈ {0, · · · , k + 1} (1)

Lemma 3.7. If k+ 1 < δ, the number of vertices n of Gk

is

n ≤ n0

(
1 +

k + 1

δ − (k + 1)

)
Proof. Due to (1), we can assume that a cluster on level

l contains n0/δ
l vertices. Each cluster has at most k + 1

upper neighbor-clusters. Thus, the number of vertices nl on
level l is upper bounded by

nl ≤ (k + 1)l · n0

δl
.

Summing up the vertices over all the level l:

n0 ≤ n0 ·
k+1∑
l=0

(
k + 1

δ

)l

≤ n0 ·
∞∑

l=0

(
k + 1

δ

)l

= n0

(
1 +

k + 1

δ − (k + 1)

)

The number of vertices per cluster decrease by a factor δ on
each level of CTk. Due to (1), it is now possible to obtain
G′k. CTk has k + 2 levels, and at most δk vertices are in
each cluster. If we assume that the clusters on level k + 1
have δk vertices, then there are δ2k+1−l vertices in a given
cluster on level l. By lemma 3.7, it follows that n ≤ 2n0 for
k+1 ≤ δ/2. By using the construction of subsection 3.2, we

get n0 ≤ n′0 · 〈n′〉
2k−5

with 〈n′〉 as the smallest primepower
equal to n′, that is 〈n′〉 < 4n′0. It follows:

n0 ≤ (4n′0)2k−4 ≤ 42k−4δ4k2
(2)

Theorem 3.8. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the mini-
mum vertex cover problem on G has an approximation ratio
of at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)
for some sonstant c ≥ 1/4, where n and ∆ denote the num-
ber of vertices and the highest degree in G, respectively.

Proof. We can choose δ ≥ 4−1/(2k)n
1/(4k2)
0 due to in-

equality (2). Finally, using lemmas 3.6 and 3.7, the approx-
imation ratio α is at least

α ≥ n0/2

n− n0
≥ n0/2 · δ/2
n0 · (k + 1)

≥ (n/2)1/(4k2)

41+1/(2k)(k + 1)
∈ Ω

(
n1/(4k2)

k

)
The second lower bound follows from ∆ = δk+1.

Theorem 3.9. In order to obtain a polylogarithmic or
even constant approximation ratio, every distributed algo-

rithm for the MVC problem requires at least Ω
(√

log n
log log n

)
and Ω

(
log ∆

log log ∆

)
communication rounds.

Proof. For k = β
√

logn/ log log n with β > 0, we get

α ≥ γn
c log logn
β2 logn · 1

β

√
log log n

logn

as the first lower bound of theorem 3.8 with γ as the hidden
constant of the Ω-notation. After a few calculation steps, we

get that α is element of Ω

(
log(n)

(
c
β2−

1
2

))
There is always

a β such that the obove expression is a polylogarithmic term
α(n). The first lower bound of the theorem 3.8 follows. The
second lower bound of this theorem follows analogous with
k = β log ∆/ log log ∆.

Now, other problems are reduces to the MVC problem.
For the maximal matching (MM) and the maximal indepen-
dent set (MIS), the best known lower bound for distributed
computation is Ω(log∗ n).

Theorem 3.10. There are graphs G on which every dis-
tributed algorithm requires time

Ω

(√
logn

log log n

)
and Ω

(
log ∆

log log ∆

)
to compute a MM or a MIS.

Proof. Since the set of all end-vertices of the edges of
a MM form a 2-approximation for MVC, the lower bound
follows directly from theorem 3.9. To see that these lower
bounds hold for MIS, consider a line graph L(Gk) ofGk. The
MM problem on G is the same as the MIS problem on L(G).
And even though there is a different amount of vertices (n in
Gk and less than n2/2 in L(Gk)) and a different maximum
degree (∆ in Gk and 2∆ in L(Gk), the theorem holds.

Theorem 3.11. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the min-
imum dominating set (MDS) problem on G has approxima-
tion ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)
for some constant c, where n denotes the number of vertices
and ∆ the highest degree in G.

Proof. Let G′ = (V ′, E′) be a graph in which the MVC
problem is solved. The graph G = (V,E) for the MDS is
now constructed as follows: Every v′ ∈ V ′(G′) corresponds
to a vn ∈ V (G), every e′ ∈ E′(G′) corresponds to a ve ∈
V (G). Two vertices v′n, u

′
n ∈ G are adjacent, if v′, u′ ∈ G′

are adjacent. Two vertices vn, we ∈ G′ are adjacent, if the
vertex v′ ∈ V ′(G′) is adjacent to the edge w′ ∈ E′(G′).
There are no other edges in G. If C is a vertex cover for
G′, the vertices vn ∈ G, which correspond to vertices in C
form a valid dominating set on G. All e-vertices are covered.
The n-vertices are covered due to the fact that a valid vertex
cover is a valid dominating set as well. The other direction:
If D is a valid dominating set on G, every e-vertex in D

can be replaced by one of its two neighbors. And thus, we
get a different dominating set D′ which also has the needed
properties. But D′ only consists of n-vertices. D′ dominates
all e-vertices and it also forms a valid vertex cover for G′. It
follows that MVS on G′ is as hard as MDS on G.

4. OPEN QUESTIONS
If the weak-2-coloring is applicable, it can be made very

efficient and with a low failure rate. Based on the weak-2-
coloring, the formal dining philosophers problem can also be
solved efficiently. But it is very unusual that an algorithm
can be ashured that the degrees of the vertices of a graph
are bounded.

For some other problems, e.g. the MVC, there are lower
bounds for the runtime depending on the highest degree of
a graph and on the number of vertices. They cannot be
solved locally, because the vertices do not know the whole
system. Due to fast growing networks, it would be good, if
some problems could be solved locally. But there are only a
few special locally solvable problems.

5. REFERENCES
[1] Dining philosophers problem. http://en.wikipedia.

org/wiki/Dining_philosophers_problem.

[2] R. Cole and U. Vishkin. Deterministic coin tossing with
applications to optimal parallel list ranking. Inf.
Control, 70(1):32–53, 1986.

[3] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In PODC ’04: Proceedings
of the twenty-third annual ACM symposium on
Principles of distributed computing, pages 300–309,
New York, NY, USA, 2004. ACM.

[4] F. Lazebnik and V. A. Ustimenko. Explicit construction
of graphs with an arbitrary large girth and of large size.
Discrete Appl. Math., 60(1-3):275–284, 1995.

[5] M. Naor and L. Stockmeyer. What can be computed
locally? pages 184–193, 1993.

