
A HackIt Framework for Security Education in Computer Science
Raising Awareness in Secondary School and at University with a Challenge-based

Learning Environment

Florian Kerber, Jan Holz, Hendrik Thüs and Ulrik Schroeder
Learning Technologies Research Group, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

florian.kerber@rwth-aachen.de, fholz, thues, schroederg@informatik.rwth-aachen.de

Keywords: Computer Science Education, Challenge, Game-based Learning, Framework, Security, Higher Education.

Abstract: HackIts are short computer security challenges which are often Web-based. Their purpose is to raise aware-
ness for common security issues by showing different intrusion possibilities in today’s computer security. We
present a framework that allows security education in a safe, modular, and motivating way, with the possi-
bility of flexible and low-cost integration into existing curricula. By solving challenges within this learning
environment, the leaner gets confronted with IT security problems and learns how to prevent them.

1 INTRODUCTION

Today’s society relies more and more on communi-
cation and storing data online, which results in secu-
rity aspects becoming more and more important. To
increase the focus on the growing importance of se-
curity aspects during Internet usage and software de-
velopment, the HackIt!-Framework that will be intro-
duced in this paper, puts the learners in the attacker’s
perspective to raise awareness for this topic.

In a game-based learning environment, the stu-
dents learn how to identify and counter common secu-
rity vulnerabilities. Each challenge (called a HackIt)
is one level in the whole set of challenges of a course
and addresses one or more security issues. They have
to be discovered and exploited by the learners to solve
the challenge and to advance to the next one.

The HackIt!-Framework is suitable for and aiming
at secondary school students and university students
in their early semesters. Both of them can use the
framework during workshops, which are offered by
our research group (Bergner et al., 2012) (Apel et al.,
2012), or as exercises during or after lectures. After
this, the learners should have a keen sense of security
problems in today’s Web software.

2 DESIGN DECISIONS

When making the first design decisions for the
HackIt!-Framework, we had several aspects in mind
that required consideration. Some of these are the

flexible intergration into existing curricula, the impor-
tance of fun and motivation while learning and the
practical relevance und application of security princi-
ples. In the following we will describe these consid-
erations.

2.1 Flexible Curricular Integration

Safe software and cautious usage of current electronic
media are vital for a risk-aware participation in mod-
ern life. This is especially important for computer sci-
ence students, who will be future developers of those
systems. So, integrating security aspects into com-
puter science education is an important, but also com-
plicated task. As Yang pointed out, most educators
lack the knowledge needed for integrating security as-
pects into existing courses (Yang, 2001).

Nevertheless, we want to provide the possibility
to integrate these important aspects flexibly into ap-
propriate courses, which can stem from various dif-
ferent areas of computer science (Border and Holden,
2003). Due to limited time and resources in designing
courses, we decided for a modular approach, which is
not directly linked to a specific lecture or workshop
(Edge and Stamey, 2010) as further described in sec-
tion 2.3.

2.2 Aspects of Games in CS Education

Within the field of computer science education, the in-
teractive learning style of game-based learning mostly
invites to use this approach for teaching algorithms.

242



Shabanah and Chen list the following benefits of us-
ing serious computer games for algorithm learning:
Computer games are popular, interactive and compet-
itive and they utilize entertainment and simplify as-
sessment (Shabanah and Chen, 2009). These charac-
teristics are easily applicable to other areas of com-
puter science education as well. Therefore, we will
use a competitive game-based approach to motivate
learners while playing the different challenges of the
HackIt!-Framework.

2.3 Target Groups

The HackIt!-Framework provides a platform for a
plethora of different security challenges, as described
in section 3.1. Thus, it is applicable for different tar-
get groups. The basic content of the framework is
intended for students that visit the InfoSphere - the
students’ lab for Computer Science at RWTH Aachen
University (Bergner et al., 2012). These school stu-
dents are mostly not yet familiar with the concepts
of computer and information security. This frame-
work helps the students to get informed about the
responsibility to sanitize their source code. By con-
fronting them with common mistakes and risks that
arise thereof, they will be sensitized to avoid these
mistakes in their future implementations.

Besides the usage for school students, this frame-
work provides ideal conditions for higher education.
Computer science students, e.g. participants of a
Web-Technologies lecture, get the possibility to solve
and maybe to develop challenges as part of their learn-
ing process. Especially the design and implemen-
tation of challenges support the learners in creating
safer software (Pothamsetty, 2005). Depending on
their prior knowledge, the framework allows to flexi-
bly build individual task-sets of different difficulties.

3 FEATURES OF THE
HackIt!-FRAMEWORK

The HackIt!-Framework will provide its users a full-
fledged modular system for creating, modifying, and
supervising HackIt!-based security challenges. It
ships with an extensive administration panel, allow-
ing the lecturer to modularly create a customized
set of challenges via drag and drop (see Figures 1).
Additionally, users will be able to request hints for
the challenges, which, depending on the administra-
tive settings, will cause scoring penalties or not. Op-
tionally, the administrator can enable a high score for
this challenge set, allowing users to view the progress

Figure 1: The tabs for challenge and user administration.
Learners can be grouped together and challenges can be as-
signed to them.

of their classmates, which encourages competitive
gameplay.

3.1 Challenge Types

All challenges are categorized by their type, providing
a pleasant overview and the possibility to easily create
mixed challenge sets.

� Basic. These challenges contain simple plain
JavaScript challenges and are mostly used to
warm up and give the user a basic understanding
of JavaScript password checks.

� Realistic. Realistic challenges confront the user
with real-world problems of today’s software.
They include but are not limited to SQL injec-
tion and cross-side scripting (XSS) due to miss-
ing input sanitization, as well as htaccess security
and weak or commonly-used passwords. Some
missions will also focus on the differentiation be-
tween legit and phishing mail, amongst others
preventing the user to fall prey to fraud attacks.

� Review. During these challenges, the user gets
confronted with the source code of a particular
security feature and is responsible for finding the
vulnerability or problem in it. These challenges
might get extended to allow the learner to repair
them.

� Advanced. These kinds of challenges require
ssh key breaking, reverse engineering of self-
modifying executables, custom hash breaking,
and/or deep domain knowledge and should not be
used for common school exercises, or at least be
marked as optional. There are currently only a few
challenges of this type with the purpose to chal-
lenge participants that already solved everything
else.

These categories cover most of the top ten security is-
sues, published by the OWASP Top Ten Project1.

1https://www.owasp.org/index.php/Category:OWASP T
op Ten Project

A�HackIt�Framework�for�Security�Education�in�Computer�Science�-�Raising�Awareness�in�Secondary�School�and�at
University�with�a�Challenge-based�Learning�Environment

243



After the user sucessfully solved a challenge,
which in most cases corresponds to obtaining the hid-
den password or gaining access to a protected area,
the user is informed about this success and brought
back to the challenge overview. In this overview, the
just-solved challenge changes its color and thus eases
the overview over the overall progress (see Figure 2).

Figure 2: The overall progress of a certain learner.

To overcome non-self-explainatory instructions
or to motivate the learner to work on a possibly
less engaging exploit or vulnerability, the HackIt!-
Framework wraps the challenges in a story that fol-
lows the user throughout the set and supplys him with
information regarding the task.

To prevent frustration, the HackIt!-Framework
will offer its users the ability to request hints by click-
ing on a button to point them in the right direction.
These clues vary in their detailedness by starting from
a very basic hint, like which subject has to be inves-
tigated, up to a detailed problem description and op-
tional steps required to solve the challenge. In order
to decrease the overuse of this optionally enabled fea-
ture, its usage can optionally cause certain penalties
to the user. These penalties can range from a sim-
ple subtraction of points, the use of a modifying fac-
tor to the amounts of points the challenge normally
would yield, up to the marking of the user’s challenge
as “solved with hints”.

Since an important point of human psychology
is motivation, the HackIt!-Framework allows users
to compete against each other by providing a public
scoreboard, on which they are able to see each other’s
progress. The position on this scoreboard is deter-
mined by the amount of challenges solved, their diffi-
culty, and optionally the time required to solve it.

3.2 Setup and Usage

To ensure the security of the host system as well as an
easy deployment of the HackIt!-Framework, it will be
distributed as an almost ready-to-use virtual sandbox
image for the virtualization software VirtualBox.

The framework itself can and should be hosted by
the teacher. It provides a Web server which is capable
of handling all the requests. There is no need for the
students to install anything on their PCs. The chal-
lenges can (mostly) be solved by only using a web
browser. Since this is a centralized client-server sys-
tem, the administrator (the teacher) is able to assem-
ble to challenges and to view the results.

4 RELATED LEARNING
ENVIRONMENTS

Aside the HackIt!-Framework, there is the project
HackThisSite2, which also provides HackIt chal-
lenges to its users. This website offers tasks in
different categories: basic, realistic, application,
programming, phonephreaking, extbasic, JavaScript,
steganography and IRC missions. Only the Basic,
JavaScript, and Realistic challenges are comparable
to the HackIt!-Framework. The other challenge types
specialize on finding hidden messages inside images
(steganography), abusing known Internet Relay Chat
(IRC) vulnerabilities, writing programs to solve cer-
tain tasks within a short time limit which require de-
cent times for humans (Programming) or reverse en-
gineering programs to make them reveal their secret
(Application). As these challenge types do not sen-
sibilize the user to (Web) security, but rather in more
advanced or more specialized topics, these kinds of
challenges are currently not included in the HackIt!-
Framework. But due to the fact that the HackIt!-
Framework is completely modularized, these types of
challenges could be easily created and added later on,
as there is no restriction in the kind of challenge that
the framework supports.

A different example is the website Happy-
Security3 which also offers various kinds of chal-
lenges: exploits, Flash, IRC, Java, JavaScript, cryp-
tography, logic, programming, reverse engineering,
steganography and PHP. The challenges of the dif-
ferent categories vary in their difficulty and can be
created by the participants themselves. Most of the
categories are outside of the scope of the HackIt!-
Framework but especially the basic challenges, like

2http://www.hackthissite.org
3http://www.happy-security.de

CSEDU�2013�-�5th�International�Conference�on�Computer�Supported�Education

244



the in the JavaScript or the exploit category, are com-
pareble to those of the proposed framework. Still
Happy-Security is difficult to use for educational pur-
poses as it does not allow customization for courses
of different difficulties or feedback on the learning
progress for the tutor.

A possible drawback of the HackIt!-Framework in
comparision to these websites is the community. In
their forums, users are able to ask questions regard-
ing the challenges, and others try to point them in the
right direction without spoiling too much information.
This kind of community feedback is replaced with the
upcoming hint system in our framework.

The benefit of the HackIt!-Framework is its mod-
ularized core, allowing easily exchangeable challenge
sets, user management as well as an easy inclusion of
own and new challenges. This allows a quick growth
without much effort, as most functionality is provided
by the framework. Besides, the related systems do not
offer the possibility to view or export the results of the
(un-)solved challenges of the students.

5 CONCLUSIONS

This paper presents the development and features of
the HackIt!-Framework, a Web-based framework for
modular challenge set creation. It provides a solid
base for further computer security learning content
and enables to teach the security aspects of current
website security as well as today’s Internet risks.

The focus on modularity should ensure a flexible
and persistence use, whereas the strong self-security
measures allow a save deployment in educational set-
tings. The possibility to adopt its challenges to the
target audience’s knowledge level make it a suitable
choice for weekly exercises or smaller competitions.

5.1 Future Work

There are many ways to extend the HackIt!-
Framework and enrich its features. The implemented
challenges for this system do not cover the complete
set of the main security issues. The next steps are to
implement several ideas for challenges to have a good
basis that covers most of nowadays security problems
and to keep the framework and its content always in-
teresting and feature rich.

The HackIt!-Framework is work in progress.
Some described features are not deployed or fully
tested at the current time. These are namely the score-
board, the hint system, the story, the unique pass-
words, the flagging challenges as optional or required,

and the order enforcement of challenges. The deploy-
ment and the testing of these features will be done in
the near future to have the system fully functioning
for the upcoming evaluation.
The authors plan to use the HackIt!-Framework as a
method to teach students of a Web Technologies lec-
ture how easy it can be to exploit self-implemented
Web applications if the source code is not sanitized
well. In this evaluation, not only the interface design
and the ease of use will be evaluated but also if the stu-
dents will be aware of the risks of implementing Web
application when it comes to security issues. Last,
but not least, it should be determined if the students
like to play with those challenges and if it is easier for
them to learn about possible counter measurements by
solving quests instead of learning about those threads
in a theoretical way.

REFERENCES

Apel, R., Berg, T., Bergner, N., Chatti, M. A., Holz, J.,
Leicht-Scholten, C., and Schroeder, U. (2012). Ein
vierstufiges frderkonzept fr die studieneingangsphase
in der informatik. In Proceedings of HDI 2012, Ham-
burg. Universittsverlag Hamburg.

Bergner, N., Holz, J., and Schroeder, U. (2012). Info-
sphere: An extracurricular learning environment for
computer science. In Proceedings of 7th Workshop in
Primary and Secondary Computing Education (WiP-
SCE 2012), Hamburg. ACM.

Border, C. and Holden, E. (2003). Security education within
the IT curriculum. In Proceedings of the 4th confer-
ence on Information technology curriculum, CITC4
’03, pages 256–264, New York, NY, USA. ACM.

Edge, C. and Stamey, J. (2010). Security education on a
budget: getting the most ”bang for the buck” with
limited time and resources. In 2010 Information Secu-
rity Curriculum Development Conference, InfoSecCD
’10, pages 29–35, New York, NY, USA. ACM.

Pothamsetty, V. (2005). Where security education is lack-
ing. In Proceedings of the 2nd annual conference on
Information security curriculum development, InfoS-
ecCD ’05, pages 54–58, New York, NY, USA. ACM.

Shabanah, S. and Chen, J. (2009). Simplifying algorithm
learning using serious games. In Proceedings of the
14th Western Canadian Conference on Computing
Education (WCCCE ’09). ACM.

Yang, T. A. (2001). Computer security and impact on com-
puter science education. In Proceedings of the sixth
annual CCSC northeastern conference on The jour-
nal of computing in small colleges, CCSC ’01, pages
233–246, USA. Consortium for Computing Sciences
in Colleges.

A�HackIt�Framework�for�Security�Education�in�Computer�Science�-�Raising�Awareness�in�Secondary�School�and�at
University�with�a�Challenge-based�Learning�Environment

245


